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The Upper Yellow River basin (UYRB), located 
over northwestern China and featuring a semiarid 
climate, experienced extreme flooding during the 

summer and autumn of 2018, with June–September 
rainfall ranked the highest since 1961 (CMA 2019). 
The extreme f looding affected about 1.4 million 
people and led to 30 deaths and disappearances. Many 
reservoirs exceeded their historical water levels to 
mitigate the floods, but the monthly mean stream-
flow during rainy season (June–September) over the 
UYRB still exceeded its historical value since 1987 
when a large reservoir started to operate.

In the Anthropocene, water resources manage-
ment such as reservoir operation changes stream-
flow characteristics significantly (Yuan et al. 2017). 

For instance, Yuan et al. (2018a) found that water 
resources management contributes up to 27% of the 
long-term changes in streamflow and its extremes 
over the middle reaches of the Yellow River. However, 
contributions from different anthropogenic factors 
(e.g., anthropogenic climate change, local human 
interventions) to the occurrence of a single extreme 
hydrological event (e.g., 2018 extreme flooding) re-
main unclear, especially for regions where both land 
and water are managed intensively (e.g., the UYRB).

Here we investigate the anthropogenic contribu-
tions to the 2018 extreme summer f looding over 
the UYRB in the context of anthropogenic climate 
change, regional water resources management, and 
land cover change, by using observed and naturalized 
streamflow data together with a high-resolution land 
surface model driven by different climate forcings.

DATA AND METHODS. Streamflow data. Daily 
streamflow observation during 1987–2018 at Lanzhou 
station, a large hydrological station over the UYRB 
(orange pentagram in Fig. 1a), was provided by the 
Yellow River Conservancy Commission (YRCC) to 
analyze the extreme flooding. Monthly naturalized 
streamflow during 1987–2010 was also provided by 
YRCC, which was estimated by adding human con-
sumed water (including agricultural, industrial, and 
civil uses) back to the observation (Fu et al. 2004; 
Yuan et al. 2017). The naturalized streamflow was 
used to evaluate performance of the land surface 
model.

Meteorological observation data. Monthly geopoten-
tial height and vertical integrated water vapor flux 
during 1979–2018 from the ERA-Interim reanaly-
sis (Dee et al. 2011) were used to show circulation 
anomalies during the f looding seasons. The me-
teorological forcings for high-resolution land surface 
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modeling were generated as 
follows: 1) the 0.5° × 0.5° 
CRUNCEP dataset (Viovy 
2011) during 1951–2016 was 
f irst regridded to 10-km 
resolution; 2) daily precipi-
tation and temperature data 
were replaced by gridded 
observational dataset dur-
ing 1951–2018, which was 
interpolated from more than 
2,470 China Meteorologi-
cal Administration (CMA) 
stations in China (Wang et 
al. 2016; Wu et al. 2017); 3) 
other forcings including dai-
ly specific humidity, surface 
shortwave radiation, wind 
speed, and surface pressure 
were extended to 2018 by 
using the 0.0625° × 0.0625° 
CMA Land Data Assimila-
tion System dataset (CLDAS; 
Meng et al. 2017), where 
the CLDAS dataset was ad-
justed to CRUNCEP clima-
tology during the overlap 
period of 2008–16 through 
quantile-mapping; and 4) 
the 0.1° China Meteorologi-
cal Forcing Dataset during 
1979–2014, which performs 
well in shortwave radiation 
(He and Yang 2011), was used 
to correct the systematic bias 
of CRUNCEP radiation at 
monthly time scale.

CMIP5 model data. Daily pre-
cipitation and temperature 
from 13 models from phase 5 
of the Coupled Model Inter-
comparison Project (CMIP5) 
(see Table ES1 in the online 
supplemental material for the 
model list) during 1951–2005 
under both historical (ALL) 
and natural (NAT) scenarios 
were also interpolated to 
10-km resolution. The 10-
km resolution is chosen to 
reasonably represent land 
surface information such as 

Fig. 1. (a) The Upper Yellow River basin (UYRB). (b) Percentage anomaly of 
precipitation (PAP) during June–September of 2018 compared with the 1961–
2018 climatology. (c) June–September mean geopotential height anomaly at 
500 hPa (shading), and integrated water vapor flux (WVF) anomaly (vectors) 
in 2018. Green and black lines show the 5,880-gpm contours for 2018 and 
1979–2018 climatology, respectively. (d) Divergence of WVF over UYRB. (e) 
Time series of June–September mean precipitation averaged over the UYRB, 
and western Pacific subtropical high ridge position index. (f) Observed and 
LUCC_CSSPv2-simulated daily streamflow. (g) Observed 2018 daily precipi-
tation and streamflow as compared with their climatology. Shaded areas are 
95% confidence intervals. Red and blue bars represent daily precipitation cases 
that are smaller and larger than its climatology respectively.
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topography and soil texture, which are important for 
streamflow modeling. All models well capture the 
temperature and precipitation distribution, with spa-
tial correlation coefficients during rainy season rang-
ing from 0.56 to 0.93. However, the spatial mean biases 
of annual temperature and precipitation range from 
−0.7° to −3.7°C and 114 to 720 mm respectively (Figs. 
ES1a,b), which may cause large biases in streamflow 
simulations. Thus we reduced the biases by applying 
a cumulative distribution function (CDF) matching 
method (Wood et al. 2002) at monthly time scale (see 
the supplemental material for detailed information).

Experimental design. The land surface model, Con-
junctive Surface-Subsurface Process model version 
2 (CSSPv2; Yuan et al. 2018b), which well captures 
hydrological variations over the UYRB (Yuan et 
al. 2018b), was used for streamflow simulation in 
this study. Monthly Leaf Area Index (LAI) values 
during 1982–2018 estimated from the Global Inven-
tory Modeling and Mapping Studies (GIMMS) and 
MODIS Normalized Difference Vegetation Index 
(NDVI; Yuan et al. 2018b) were used to represent 
land cover change.

Differences between observed and naturalized 
streamflow are attributed to human water inter-
vention (mainly from reservoir operation over the 
UYRB). Due to the lack of data, the CSSPv2 model 
was first driven by modified CRUNCEP data with 
interannual LAI variations (LUCC_CSSPv2) to pro-
vide daily naturalized streamflow. Evaluation results 
(see the online supplement for detailed information) 
show that LUCC_CSSPv2 well simulates naturalized 
streamflow with high Nash–Sutcliffe efficiency (up 
to 0.87) and low relative bias (−3% to −2%). Second, 
CSSPv2 was driven by the modified CRUNCEP data-
set with LAI fixed in 1982 (FIXED_CSSPv2). The dif-
ference between LUCC_CSSPv2 and FIXED_CSSPv2 
is the impact of land cover change. Third, the CSSPv2 
model was forced by bias-corrected CMIP5 model 
outputs under ALL (ALL/FIXED_CSSPv2) and NAT 
(NAT/FIXED_CSSPv2) scenarios without land cover 
change, to distinguish the anthropogenic climate 
change impacts. Although ALL simulations implicitly 
include land use/cover change (LUCC) information 
to some extent, most of them cannot capture the 
interannual variations of land cover at regional scale 
due to the deficiencies in the vegetation dynamics 
models (Bao et al. 2014). Therefore, here we ignore 
the LUCC effect in these CMIP-driven experiments.

Definition of extreme streamflow and attribution meth-
ods. In this study, the annual maximum daily stream-

flow is defined as high flow, whose distribution was 
estimated by the generalized extreme value (GEV) 
distribution. The probability of high flow exceeding 
a value of 3,500 m3 s−1 is defined as the probability 
of extreme flooding like that of 2018. The risk ratio 
(Fischer and Knutti 2015) is then calculated as RRi = 
Pi ∕PNAT, where i represents different scenarios and 
PNAT is the probability of extreme flooding without 
any anthropogenic effects. Due to the errors in CMIP5 
simulations, the distribution of ALL/FIXED_CSSPv2 
is not necessarily identical to FIXED_CSSPv2. Thus 
PNAT is not equal to PNAT/FIXED_CSSPv2. However, as-
suming that the ALL/FIXED_CSSPv2 and NAT/
FIXED_CSSPv2 can provide a reliable estimation of 
anthropogenic climate change effect through their 
intercomparison, PNAT can be estimated through the 
assumption of

  
 

.
 

How much impact an anthropogenic factor would 
have on the likelihood of extreme f looding event 
can be directly calculated by comparing risk ratios 
in different experiments (see the supplemental 
material for detailed information). We repeated the 
above calculation of risk ratio and return period 
by doing bootstrapping 10,000 times. During each 
bootstrap, high flow data under different scenarios 
were resampled with replacement to get a set of new 
data with the same length as the original (Paciorek 
et al. 2018). Median value was used as mean value to 
avoid outliers (e.g., infinite), while 2.5% and 97.5% 
percentiles were used to estimate uncertainties at 
95% confidence level.

RESULTS. Large positive anomalies of June–Sep-
tember precipitation over northwestern China in 2018 
(Fig. 1b) are related to the anomalous position of the 
western Pacific subtropical high (WPSH). Repre-
sented by geopotential height contour at 5,880 gpm, 
the WPSH in 2018 (green line in Fig. 1c) shifts to the 
north compared with its climatology position during 
1979–2018 (black line in Fig. 1c). The northernmost 
WPSH, revealed by WPSH Ridge Position Index (RPI) 
(Fig. 1e), correlates well with UYRB rainfall because 
the northward WPSH brings sufficient water vapor 
from northwestern Pacific and South China Sea to 
the northwestern China through the southeastern 
wind anomaly, causing a convergence of water va-
por in UYRB (Fig. 1d) and thus providing favorable 
conditions for precipitation. Under this background, 
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precipitation is larger than its climatology for most 
days during June–September in 2018, with five days 
showing extreme rainfall events (>99% percentile) 
(Fig. 1g). Land surface becomes saturated due to this 
seasonal-scale positive precipitation anomaly, which 
then reduces infiltration capacity and increases both 
surface and subsurface runoff. As a result, daily 
streamflow starts to increase in June, significantly 
exceeds its climatology during July–September, and 
reaches its maximum when the accumulated precipi-
tation reaches its maximum in late September. Natu-
ralized streamflow (LUCC_CSSPv2) shows that the 
high flow could be 6,622 m3 s−1, with a return period 
of 242 yr (95% CI: >82 yr) (Fig. 1f). However, due to 
reservoir operation over the UYRB, the observed 
value is only 3,500 m3 s−1, with a return period of 50 
yr (95% CI: 27–130 yr).

Figures 2a and 2b show probability distribution 
functions (PDFs) of high flow with or without LUCC 
or reservoir operation effects, together with their 
95% confidence intervals. The significant leftward 

shifting of the PDFs suggests that both land cover 
change and reservoir regulation decrease extreme 
high f low occurrence. As compared with natural 
climate change conditions, anthropogenic climate 
change also decreases probability of extreme high 
flow (Fig. 2c).

Table 1 shows return period and risk ratio of the 
2018 extreme f looding under different scenarios. 
Without any anthropogenic influence (NAT scenario), 
this extreme event occurs frequently with a 5-yr (95% 
CI: 3–10 yr) return period. When anthropogenic cli-
mate change, land cover change, and reservoir opera-
tion are gradually considered, the risk ratio decreases 
to 0.66 (95% CI: 0.56–0.82), 0.55 (95% CI: 0.44–0.68), 
and 0.1 (95% CI: 0.04–0.17) respectively. The risk ratio 
decreases significantly by 0.34 (95% CI: 0.18–0.44) 
from NAT to FIXED_CSSPv2, by 0.11 (95% CI: 
0.08–0.21) from FIXED_CSSPv2 to LUCC_CSSPv2, 
and by 0.45 (95% CI: 0.34–0.57) from LUCC_CSSPv2 
to YRCC observed streamflow scenarios.

Different from reservoir operation, which reduces 
the probability of f looding 
by controlling the surface 
runoff, increased vegetation 
cover (p < 0.01) over the 
UYRB (Fig. ES2a) caused 
by conservation programs 
(Cuo et al. 2013) increases 
evapotranspiration during 
June–September (Fig. ES2b) 
and reduces soil moisture 
and thus subsurface runoff 
(Fig. ES2c). Anthropogenic 
climate change reduces sur-
face runoff (Fig. ES2e) by 
significantly reducing the 
seasonal precipitation (Fig. 
2d) instead of the extreme 
precipitation (Fig. 2e). The 
negative effect of anthro-
pogenic climate change on 
seasonal precipitation oc-
curs because the descending 
branch of Hadley circula-
tion over the edges (30° 
to 40°N) enhances in a 
warming climate (Su et al. 
2014), which inhibits pre-
cipitation generation. More-
over, anthropogenic climate 
change increases evapo-
transpiration (Fig. ES2d), 
thus reducing soil moisture 

Fig. 2. (a) Probability distribution functions (PDFs) of observed high flow 
(green). (b) PDFs of CSSPv2-simulated high flows with (LUCC_CSSPv2) or 
without (FIXED_CSSPv2) land cover changes. (c) PDFs of simulated high flow 
forced by CMIP5 ALL (ALL/FIXED_CSSPv2) and NAT (NAT/FIXED_CSSPv2) 
climate output (see Methods section for details). Black lines in (a)–(c) rep-
resent the high flow threshold value of 2018. (d) PDFs of June–September 
mean precipitation under ALL and NAT scenarios, with the black line show-
ing extreme rainfall in 2018. (e) PDFs of extreme daily precipitation (>99% 
percentile) under ALL and NAT scenarios. All the shading areas represent 
95% confidence intervals.
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as well as subsurface runoff 
(Fig. ES2e).

CONCLUSIONS AND 
DISCUSSION. Anthro-
pogenic contributions to the 
2018 extreme flooding event 
were analyzed by consider-
ing large-scale anthropo-
genic climate change and 
local human interventions. 
The probability for the oc-
currence of the event decreases by 90% due to those 
anthropogenic factors, with anthropogenic climate 
change, land cover change, and reservoir regulation 
contributing by 34%, 11%, and 45% respectively.

As risk ratios are all relative to the NAT condi-
tion in this study, this makes it easy to compare 
different risk ratio under different scenarios. For 
example, by comparing the risk ratio of YRCC ob-
served streamflow and LUCC_CSSPv2, reservoir 
operation decreases the risk of extreme flooding in 
the LUCC_CSSPv2 scenario by 82%. However, as the 
probability of extreme flooding in LUCC_CSSPv2 
is only 55% of that in NAT scenario, the value will 
be 45% (0.82 × 0.55) again when we use the extreme 
flooding probability in NAT scenario as a reference.

The attribution results proposed in this study 
have uncertainties. For example, the land cover 
change cannot be interpreted solely as local hu-
man intervention as other factors including climate 
change and CO2 fertilization also have contributions. 
However, as climate models have large uncertainty 
in simulating vegetation dynamics (Bao et al. 2014), 
it is still a great challenge to attribute land cover 
changes under different scenarios. Biases in land 
surface model may cause uncertainties in human 
water intervention attributions. However, consider-
ing the low bias of CSSPv2 in reproducing natural 
conditions (−3% to −2%), the model uncertainty 
should be limited and it does not influence the re-
sults significantly.

Our results highlight the importance of local-
scale human inf luences in hydrological attribu-
tions, as anthropogenic contributions may be un-
derestimated by 60% (56% relative to 90%) without 
considering them. More efforts should be made to 
incorporate local-scale human activities in current 
global climate models (GCMs), as most GCMs do not 
have representation of water management or vegeta-
tion dynamics due to coarse resolution, imperfect 
parameterizations, etc. (Fisher et al. 2018; Trenberth 
and Asrar 2014).
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