“Extreme” extremes and the challenge of attribution: A Tasmanian case study

Carly R. Tozer¹, James S. Risbey¹, Michael Grose¹, Didier P. Monselesan¹, Dougal T. Squire¹, Amanda S. Black¹, Doug Richardson¹, Sarah N. Sparrow², Sihan Li² and David Wallom²

¹CSIRO Oceans & Atmosphere, Hobart, Tasmania, Australia
²Oxford e-Research Centre, Department of Engineering, University of Oxford, Oxford, United Kingdom

Corresponding author address: CSIRO Oceans & Atmosphere, Hobart, Tasmania, Australia
E-mail: carly.tozer@csiro.au

ABSTRACT

Attribution of an extreme magnitude 1-day rainfall event in Hobart is inhibited by small sample size. For moderate magnitude Hobart daily rainfall extremes the associated extratropical lows deliver more rainfall with weaker pressure anomalies in a warmer world.
1. Introduction

On May 10th 2018, Hobart, Tasmania, experienced an extreme rainfall event, which caused flash flooding, infrastructure damage and major disruption across the capital city, leading to $100 million in insurance claims (Cooper 2019). Gauged records indicate that 130mm of rain fell during the event, which ranks as the second highest autumn rainfall day over the ~120-year record, with the largest occurring in 1960. The frequency and magnitude of daily autumn wet extremes show interannual to multidecadal variability over the gauged record and no clear linear trend (Figure 1a). Future projections, however, indicate that in a warmer world these types of events are likely to increase in both frequency and magnitude across Tasmania (White et al. 2013). Given its extreme magnitude we thus ask whether an anthropogenic contribution is already apparent in the autumn 2018 event.

Anthropogenic attribution assessments typically rely on general circulation models (GCMs) to characterise the expected signal. Daily rainfall extremes present a novel challenge for event attribution in GCMs because the rainfall process is at least partly parameterised. In order to have confidence in the use of GCMs for attribution studies, it is important to not only assess their ability to simulate the statistics of extreme events (e.g. magnitude and frequency) but also the associated atmospheric circulation (Grose et al. 2012; Otto 2016; Sillmann et al. 2017; Tozer et al. 2019). This provides confidence that a model is producing rainfall extremes for the right reasons (Eyring et al. 2019).
In our approach to this event attribution study we include an evaluation of our selected model’s ability to simulate 1-day wet extremes in Hobart and their associated synoptic and large-scale circulation. We utilise the atmosphere-only HadAM3P model from the weather@home project (Massey et al. 2015; Guillod et al. 2017). Weather@home provides simulations of both an “actual” and “natural” world (effectively, with and without anthropogenic climate change), which allows us to estimate changes in climate extremes in the current climate relative to a climate unaltered by anthropogenic influence (Massey et al. 2015; Schaller et al. 2016; Black et al. 2016).

2. Data and Methods

We use 450 simulations of autumn 2018 from the actual (ACT) and natural (NAT) weather@home experiments (equivalent to 40500 days each). The ACT simulations are produced under 2018 sea surface temperatures (SST), sea ice concentrations and atmospheric forcings. NAT uses pre-industrial forcings and an SST field that has the estimated anthropogenic SST change pattern removed. This change pattern is derived from estimates from multiple GCMs contributing to CMIP5 (Schaller et al. 2016). We extract rainfall for the model grid box encompassing Hobart. Geopotential height anomalies at 500 hPa (z500), calculated relative to the mean of all NAT or ACT autumn 2018 simulations, are used to represent the atmospheric circulation.

For observed rainfall we use a gridded rainfall product from the Australian Water Availability Project (AWAP). AWAP provides interpolated gauged data at a grid resolution of 0.05° longitude x 0.05° latitude (Raupach et al. 2006; Jones et al. 2009) from 1900 to present. To
allow a fair comparison with the lower resolution model, we spatially averaged all AWAP
grid boxes within the relevant HadAM3P grid box (1.875° longitude x 1.25° latitude, inset
Figure 1b). We also refer to point data recorded in Hobart (Australian Bureau of
Meteorology gauge no. 094029). The Japanese 55-year Reanalysis [JRA, Kobayashi et al.
(2015)] is used as our observed reference for atmospheric circulation and is available from
1958 to present.

Figure 1a presents the highest daily rainfall recorded in each autumn across the 1900-2018
period. The magnitudes of the highest autumn rainfall days in 1909, 1960 and 2018 far
exceed those in other years. There is clearly a small sample of these “extreme” extremes,
which makes attribution challenging. For the purposes of analysis we include “extreme”
extremes (including the autumn 2018 event) as part of a broader range of 1-day extreme
wet events (National Academies of Sciences and Medicine 2016; Bellprat et al. 2019). We
identify 1-day extreme wet events in Hobart (in the AWAP, gauge and model datasets) as
any day greater than the 99th percentile daily rainfall, where the 99th percentile value is
calculated per calendar day, to account for the seasonal cycle. Daily rainfall series are noisy,
thus to provide a reasonable sample size from which to calculate the 99th percentile values,
we use a moving 15-day window centred on the day in question (Perkins and Alexander
2013). For example, for calendar day May 8th, we include days from May 1st to May 15th
across the 1900-2018 period in the analysis pool (i.e. close to 2000 days). For the gauged
record the threshold percentile values range from ~18-27mm across autumn days. For the
AWAP extreme events the threshold values range from ~16-31mm and for modelled
extremes this range is ~10-22mm.
To evaluate the model simulations we compare the distributions of wet events identified in the model (ACT) with the AWAP and gauged data distributions (Figure 1b). We then average the z500 anomalies associated with each wet event to form a composite of the circulation associated with wet events in Hobart in both the observations (in this case AWAP and JRA) and model (ACT) simulations. This approach is based on the methodology presented in Tozer et al. (2019).

For the event attribution component we assess both the rainfall and circulation associated with wet extremes in the ACT and NAT simulations. Specifically, we:

1. Identify 1-day wet events in NAT and ACT, with both cases referenced to the NAT percentile values. The NAT thresholds provide a baseline to determine any changes in the extreme rainfall distribution from the “natural” to the “actual” world.

2. Extract z500 anomalies for the model grid box approximately encompassing the highest negative z500 anomaly associated with wet events (as identified in the composite analysis). We assess the z500 anomaly distribution for NAT and ACT wet events to determine if there are changes in the intensity of z500 associated with wet events in a warming world.

3. Results and Discussion

a. Model evaluation

We compare the magnitude of autumn 1-day wet events in the gauged, AWAP and model (ACT) data in Figure 1b. For the gauged data, there is a large range of magnitudes that classify as a daily wet extreme. Most events range between 20-50mm (median of 29mm)
and occur at a frequency of almost one event per year. The autumn 2018 event sits far in
the tail of the distribution. The AWAP wet events have a slightly higher median of 31mm but
have reduced extreme magnitudes relative to the gauged data (e.g. the autumn 2018 event
sits in the 70-80mm range), a result of the spatial averaging (discussed above), and because
it is a gridded product (Tozer et al. 2012; King et al. 2013). The modelled wet events have
further reduced magnitude with a median value of 21mm.

Both AWAP and the model have a slightly lower frequency of wet events relative to gauged.
Common across all datasets is the long tail of the wet event magnitude distribution,
highlighting that there are very few “extreme” extremes in both observations and large
model simulations.

As seen in Figure 1c, Hobart 1-day wet events are typically associated with an intense low
pressure system (Fox-Hughes and White 2015), which is cutoff from the westerly flow by a
blocking high in the Tasman Sea (Pook et al. 2010). These synoptic structures are associated
with a large scale wave train in the polar jet (Tozer et al. 2018). Figure 1d indicates that the
model successfully captures these synoptic and large-scale processes, which builds
confidence in its representation of real world wet extremes for the following attribution
assessment.

b. Event attribution

The NAT and ACT wet event magnitude histograms have similar shapes (Figure 2a), with a
Kolmogorov-Smirnoff (KS) test suggesting that there is no significant difference between the
histograms at the 5% level (p-value of 0.18). As in the observations, there are very few
“extreme” extremes in both NAT and ACT. Also of interest is that while the overall number of wet extremes in NAT and ACT are similar, there is a higher number of events in the 30–50mm range in ACT. Figure 2c presents the return period of daily rainfall in NAT and ACT. Again it is clear that there are very few days with rainfall >50mm in both simulations. The confidence intervals for NAT and ACT for these high magnitude rainfall days are both large and overlapping. These results show that even in a large number of model simulations, these “extreme” extremes are very rare in Hobart. We cannot draw statistically robust conclusions about the anthropogenic influence on the autumn 2018 event from only a handful of events of that size. Some comment may be made about events in the 30–50mm range (“mid-range” extremes) given their larger sample size. Figure 2c clearly shows that return periods for rain days in this range are lower in ACT relative to NAT i.e. rain days of this magnitude are more frequent in ACT. For example, a 35mm rainfall day in ACT has a return period of ~8.5 years relative to ~13 years in NAT (Figure 2c inset).

We now assess variability in the intensity of the low pressure systems associated with Hobart wet events (Figure 2d). There is a clear displacement of probability mass toward lower magnitude (i.e. less negative) z500 anomalies for ACT events in Figure 2c relative to NAT. This suggests that wet events in ACT can occur in association with a weaker cutoff low intensity, which is also evident in the composite ACT and NAT circulations (Figure 2b). A KS test indicates that the shift in the distributions is significant at the 5% level (p-value of 0.02).

We further explore this observation in Figure 2e. Here we focus on the z500 anomaly range in which the majority of the wet extremes occur (i.e. 0– -200m, Figure 2d) and plot the distribution of wet extreme magnitude for z500 anomalies in bins spanning 10m each. Figure 2e reveals a tendency for wet extreme magnitudes in ACT to be greater than NAT for
the same z500 anomaly, particularly in the -160–90m z500 anomaly range. These results thus indicate that wet extremes in ACT occur in association with reduced (i.e. less negative) pressure anomalies relative to NAT or alternately, for the same size pressure anomaly there is a tendency for higher magnitude wet events in ACT relative to NAT. These results lend support to the idea that extratropical baroclinic eddies (e.g. cutoff lows) may be weaker in a warmer climate (e.g. as represented here by the ACT world), but more efficient in that the increased moisture in the atmosphere makes for more intense rainfall extremes (Held 1993; Schneider et al. 2010).

4. Conclusions

We have examined whether the autumn 2018 extreme 1-day rainfall event in Hobart had an apparent anthropogenic contribution. We first undertook a process evaluation of the HadAM3P model and found that although modelled wet events tend to have lower magnitudes compared to observed, the associated atmospheric circulation is well captured in the model, which gives confidence in its use in this attribution study. Based on the assessment of ACT and NAT simulations from the weather@home project, we draw no clear conclusions (either way) about the anthropogenic influence on very extreme rainfall days (like the autumn 2018 event), given the very small sample size of events of this magnitude. There are, however, indications that moderate magnitude 1-day wet extremes in Hobart in a warmer world (represented here by the ACT simulations) are associated with higher rainfall magnitudes for the same or weaker (i.e. less negative) circulation anomalies. To provide further confidence that extratropical lows are becoming more efficient in
delivering extreme rainfall events both in Hobart and more generally, additional models, seasons and study regions should be tested.

5. Acknowledgments.

Thank you to Paola Petrelli (University of Tasmania) for providing access to the weather@home dataset. This work was supported by the Decadal Climate Forecast Project, DIGISCAPE Future Science Platform at CSIRO, Hydro Tasmania and the National Environmental Science Program’s Earth Systems and Climate Change Hub.
6. References

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2455,

Tozer, C. R., J. S. Risbey, T. J. OKane, D. P. Monselesan, and M. J. Pook, 2018: The relationship between wave trains in the southern hemisphere storm track and rainfall
extremes over Tasmania. Monthly Weather Review, 146 (12), 4201–4230,

projection of temperature and precipitation extremes across Tasmania, Australia. Climate
Fig. 1. Model evaluation. (a) Maximum daily rainfall in each autumn in Hobart (Ellerslie Rd, gauge no. 094029). Blue bars indicate that the rainfall event is classed as a wet event as per the shifting window method described in Section 2. Years without any daily wet extreme events are indicated in gray. The number of wet events occurring in each year is shown with black dots (e.g. 3 dots means 3 wet events occurred that year). Linear trend analysis found no significant trend in the magnitude of the maximum daily autumn rainfall (p-value = 0.25) or the number of extreme daily wet events (p-value = 0.41) over the
gauged record. (b) Histogram of gauged (blue bars), AWAP (gray bars) and modelled (ACT, red bars) wet events. Diamonds indicate where the autumn 2018 event sits in the gauged and AWAP distributions. Gauged and AWAP analyses performed over the 1900-2018 period. 450 autumn 2018 ACT simulations used for the model analysis, with ACT wet events identified relative to ACT percentiles. Inset shows the location of Hobart (green dot) and relevant model grid box (red square). (c) Composite of JRA z500 anomalies for AWAP derived wet events in Hobart region. Solid (dashed) contours indicate positive (negative) geopotential height anomalies with contours every 15 m. (d) as for (c) but using modelled ACT (red contours).
Fig. 2. Event attribution. (a) Histogram of NAT (green) and ACT (red) wet event magnitude. Wet events in NAT and ACT identified relative to the NAT percentiles. Bracketed numbers show number of wet events identified for each dataset. NAT wet event thresholds ranged from 9.5-21.5mm and for ACT 9.6-21.9mm.

(b) NAT (green contours) and ACT (red contours) wet extreme composite z500 patterns. The mean z500 anomaly for the selected model grid point locating the cutoff low (red cross in inset in 2d) in ACT is -85.6m compared with -96.6 for NAT. (c) Return period (autumns) for NAT and ACT daily rainfall. Shaded areas indicate the 95% confidence interval using bootstrap resampling. Inset zooms in on selected rainfall
and return period range. (d) NAT and ACT z500 anomalies associated with wet events for selected model grid point (red cross in inset). (e) Boxplots of NAT and ACT wet event magnitude for different negative z500 anomaly ranges. The boxes indicate the 25th and 75th percentile range. The solid bars across the boxes indicate the median. Whiskers indicate the 5th and 95th percentile. Note that for all figures NAT is represented by the color green and ACT by the color red.