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Abstract 

We	demonstrate	that	in	attribution	studies,	events	defined	over	longer	timescales	generally	

produce	higher	probability	ratios	due	to	lower	interannual	variability,	reconciling	seemingly	

inconsistent	attribution	results	of	Europe's	2018	summer	heatwaves	in	reported	studies.	

Introduction 

The	summer	of	2018	was	extremely	warm	in	parts	of	Europe,	particularly	Scandinavia,	the	

Iberian	Peninsula,	and	Central	Europe,	with	a	range	of	all-time	temperature	records	set	

across	the	continent	(Johnston,	2018;	NESDIS,	2018).	Impacts	were	felt	across	Europe,	with	

wildfires	burning	in	Sweden	(Krikken,	Lehner,	Haustein,	Drobyshev,	&	van	Oldenborgh,	

2019;	Watts,	2018),	heatstroke	deaths	in	Spain	(Publico,	2018),	and	widespread	drought	

(Harris,	2018).	During	the	summer,	the	World	Weather	Attribution	(WWA)	initiative	

released	an	analysis	of	the	heat-spell	(World	Weather	Attribution,	2018)	based	on	

observations/forecasts	and	models	in	specific	locations	(Dublin,	Ireland;	De	Bilt,	

Netherlands;	Copenhagen,	Denmark;	Oslo,	Norway;	Linkoping,	Sweden;	Sodankyla,	Finland;	

Jokionen,	Finland),	which	concluded	that	the	increase	in	likelihood	due	to	human-induced	

climate	change	was	at	least	two	to	five	times.	In	December,	the	UK	Met	Office	(UKMO)	

stated	that	they	found	the	2018	UK	summer	temperatures	were	made	thirty	times	more	

likely	(Press	Office,	2018;	McCarthy,	et	al.,	2019).	These	two	estimates	appear	to	

quantitatively	disagree,	however	we	show	they	can	be	reconciled	by	investigating	the	

effects	of	using	different	spatial	domains	and	temporal	scales	in	the	event	definition.	We	

also	demonstrate	that	prescribed	SST	model	simulations	can	underrepresent	the	variability	

of	temperature	extremes,	especially	near	the	coast,	with	implications	for	any	derived	

attribution	results.	
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Event Definition 

We	consider	various	temperature-based	event	definitions	to	demonstrate	the	impact	of	this	

choice	in	attribution	assessments,	and	assess	to	what	extent	human	influence	affected	the	

seasonal	and	peak	magnitudes	of	the	2018	summer	heat-event	on	a	range	of	spatial	scales.	

The	statistic	we	use	is	the	annual	maximum	of	the	1,	10	and	90	day	running	mean	of	daily	

mean	2m	temperature,	(hereafter	TM1x,	TM10x	and	TM90x	respectively).	We	analyse	three	

spatial	scales:	model	gridbox,	regional	and	European.	For	regional	and	European	event	

definitions,	the	spatial	mean	is	calculated	before	the	running	mean.	Regional	extents	are	

taken	from	Christensen	and	Christensen	(2007),	and	European	extent	is	the	E-OBS	(Cornes,	

van	der	Schrier,	van	den	Besselaar,	&	Jones,	2018)	domain	[land	points	in	25N-71.5N,	25W-

45E].	The	WWA	used	the	annual	maxima	of	3-day	mean	daily	maximum	temperatures	at	

specific	gridpoints	for	its	connection	to	local	health	effects	(D’Ippoliti,	et	al.,	2010),	while	the	

UKMO	used	the	JJA	mean	temperature	over	the	entire	UK	in	order	to	answer	the	question	

of	how	anthropogenic	forcings	have	affected	the	likelihood	of	UK	summers	as	warm	as	

2018.	The	same	justifications	can	be	used	here,	though	we	add	that	different	heat-event	

timescales	are	important	to	different	groups	of	people,	and	as	such	using	several	temporal	

definitions	may	increase	interest	in	heat-event	attribution	studies.	However,	we	recognise	

that	other	definitions	than	those	used	here	may	be	more	relevant	to	some	impacts	

observed	(such	as	defining	the	event	in	the	context	of	the	atmospheric	flow	pattern	and	

drought	which	accompanied	the	heat),	and	other	lines	of	reasoning	for	selecting	one	

particular	event	definition	exist	(Cattiaux	&	Ribes,	2018).	
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Model Simulations and Validation 

Three	sets	of	simulations	from	the	UKMO	Hadley	Centre	HadGEM3-A	global	atmospheric	

model	(Christidis,	et	al.,	2013;	Ciavarella,	et	al.,	2018)	are	used.	These	are	a	historical	

ensemble	(1960-2013,	Historical),	and	factual	(ACT)	and	counterfactual	(a	``natural"	world	

without	anthropogenic	forcings,	NAT)	ensembles	of	2018.	We	compare	results	from	this	

factual-counterfactual	analysis	with	those	from	a	trend-based	analysis	of	Historical,	

ensembles	from	EURO-CORDEX	(Vautard,	et	al.,	2013;	Jacob,	et	al.,	2014;	Vrac,	Vaittinada	

Ayar,	&	Ayar,	2017)	(1971-2018)	and	RACMO	(Aalbers,	Lenderink,	van	Meijgaard,	&	van	den	

Hurk,	2018;	Lenderink,	et	al.,	2014)	(1950-2018),	and	observations	from	E-OBS	(1950-2018).	

A	full	model	description	is	provided	in	the	Supplementary	Information.	Initially,	we	

performed	our	analysis	with	the	weather@home	HadRM3P	European-25km	setup	(Massey,	

et	al.,	2015),	but	found	this	model	overestimates	the	variability	over	all	Europe	for	daily	

through	seasonal	scale	event	statistics	and	so	was	omitted.	

Methodology 

We	calculate	the	return	period,	RP,	for	the	2018	event	in	a	distribution	fit	to	E-OBS	using	

the	generalised	extreme	value	(GEV)	distribution	to	model	TM1x	and	TM10x,	and	the	

generalised	logistic	distribution	to	empirically	model	TM90x	throughout.	Since	the	

distribution	of	temperature	extremes	changes	as	the	climate	does,	to	account	for	the	non-

stationarity	of	the	timeseries	we	first	remove	the	trend	attributable	to	low-pass-filtered	

globally-averaged	mean	surface	temperature	[GMST,	from	Berkeley	Earth	(Rohde,	et	al.,	

2013)]	in	an	ordinary-least-squares	regression	[the	regression	coefficient	or	trend	is	shown	

in	SI	Fig.	1	(Diffenbaugh,	et	al.,	2017)].	We	then	find	the	temperature	threshold	

corresponding	to	RP	in	a	distribution	fit	to	the	model’s	climatology.	In	the	factual-
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counterfactual	analysis,	we	do	this	by	fitting	parameters	to	a	detrended	(against	GMST,	

trends	shown	in	SI	Fig.	2c7-c9)	climatological	ensemble	of	Historical	plus	15	randomly	

sampled	members	of	ACT.	We	finally	calculate	the	probability	(𝑃)	of	exceeding	this	

climatological	temperature	threshold	in	distributions	fit	to	the	ACT	and	NAT	ensembles	and	

calculate	the	probability	ratio,	PR = 𝑃!"#/𝑃!"#,	representing	the	increased	likelihood	of	

the	2018	event	in	the	factual	compared	to	the	counterfactual	world.	Using	estimated	event	

probabilities	rather	than	observed	magnitudes	constitutes	a	quantile	bias	correction	(Jeon,	

Paciorek,	&	Wehner,	2016),	minimizing	model	biases	in	the	mean	and	variability	of	the	

temperatures	analysed.	A	description	of	uncertainty	calculation	and	the	trend-based	

analysis	discussed	below	is	included	in	the	SI.	

Results 

Extreme	daily	heat-events,	measured	by	TM1x,	are	distributed	heterogeneously	throughout	

Europe	(SI	Fig.	1i).	This	is	paralleled	in	the	factual-counterfactual	PRs	seen	in	Fig.	1a,	with	

large	proportions	of	Iberia,	the	Netherlands,	and	Scandinavia	experiencing	events	that	were	

highly	unlikely	in	a	climate	without	anthropogenic	influence.	A	similar	result	is	found	on	the	

regional	scale	(Fig.	1d)	with	Scandinavia	and	the	Iberian	Peninsula	respectively	experiencing	

1-in-150	[26	,	26000]1	and	1-in-30	[9	,	550]	year	events	in	the	current	climate	that	were	

highly	unlikely	in	the	natural	climate	simulated	in	NAT.	The	remaining	regions	record	

maximum	daily	temperatures	likely	to	be	repeated	within	4	years.	Considering	the	whole	of	

Europe,	the	likelihood	of	the	2018	maximum	of	daily	European	mean	temperature	occurring	

without	climate	change	is	zero.	This	result	is	consistent	with	Uhe,	et	al.,	(2016)	and	Angélil,	

																																																								
1	Numbers	in	[	]	represent	a	90\%	confidence	interval	
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et	al.,	(2018),	who	showed	that	increasing	spatial	scale	tends	to	increase	the	probability	

ratio.	

Extreme	10-day	heat-events,	TM10x,	were	also	widespread	in	Europe,	with	the	most	

extreme	occurring	in	Scandinavia	(SI	Fig.	1j).	Regionally,	the	PRs	become	more	uniform	(Fig.	

1d),	though	Scandinavia	and	the	Iberian	Peninsula	still	have	very	high	best-estimate	PRs	of	

185	[17	,	infinite]	and	110	[18	,	56000]	respectively.	The	best-estimate	PR	for	the	average	of	

Europe	is	still	formally	infinite.	

The	PR	map	for	season-long	heat-events	measured	by	TM90x	is	more	uniform	throughout	

Europe	(Fig.	1c).	Scandinavia,	British	Isles,	France,	and	Central	and	Eastern	Europe	regions	

all	experienced	on	the	order	of	1-in-10	year	events	(SI	Fig.	1l),	and	the	corresponding	best-

estimate	PRs	are	between	10	and	100	for	all	regions	(Fig.	1d),	including	those	with	lower	

return	periods.	The	PR	for	the	European	average	is	1000	[500	-	2000].	

Trend-based	analysis,	SI	Figs.	1m-p	(observations)	and	2b	(models),	yields	similar	results,	

though	we	note	that	for	HadGEM-3A	this	results	in	generally	higher	PRs,	due	to	the	linear	

trend	with	GMST	in	the	climatology	being	greater	than	the	difference	between	the	two	

ensembles	used	in	the	factual-counterfactual	analysis.	Observational	and	model	analysis	

contradict	in	some	gridboxes	in	Northern	Scandinavia	for	TM1x	and	TM10x,	since	the	

observed	best-estimate	trend	against	GMST	is	negative,	reducing	the	event	probability	for	

the	present-day	compared	to	the	pre-industrial	climate,	therefore	yielding	PRs	of	less	than	

1.	Comparing	regional	factual-counterfactual	model	with	observational	analysis	(Fig.	1d	vs	SI	

Fig.	1p)	shows	that	the	large	observational	uncertainties	overlap	with	the	model	results:	the	

difference	could	be	due	to	natural	variability	affecting	the	small	observational	sample	size.	
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However,	we	are	cautious	of	drawing	any	conclusions	regarding	the	change	in	likelihood	of	

extreme	heat-events	as	defined	here	for	these	locations.	

The	PR	increases	with	the	event	statistic	timescale	for	the	majority	of	gridpoints	and	regions	

(shown	in	Fig.	1).	Fig.	2	illustrates	the	cause	using	the	British	Isles	region:	as	the	timescale	

increases,	the	event	statistic	distribution	variance	decreases,	while	the	mean	shift	between	

the	factual	and	counterfactual	distributions	remains	constant.	SI	Fig	1t	shows	that	the	

similarity	in	trends	with	GMST	between	the	three	timescales	is	also	true	for	the	

observations.	The	decrease	in	variance	usually	results	in	higher	PRs,	given	a	particular	event	

return	time,	for	the	longer	timescales.	There	are	exceptions	due	to	the	bounded	upper	tail	

of	a	GEV	distribution	with	a	negative	shape	parameter,	resulting	in	the	very	high	PRs	for	

TM1x	in	Scandinavia,	Iberia	and	the	Netherlands.	The	solid	and	dotted	black	lines	compare	

the	temperature	thresholds	when	using	event	return	periods	to	anomaly	magnitudes	in	E-

OBS.	This	explains	why	the	TM90x	PR	is	much	higher	than	the	other	timescales	for	the	

British	Isles:	in	addition	to	the	decreased	variance,	the	seasonal-scale	heat-event	was	more	

unusual	than	the	other	timescales,	with	a	longer	return	period	(10.6	[5.7	,	21]	years)	than	

TM10x	(2.6	[1.8	,	3.9]	years)	and	TM1x	(3.6	[2.5	,	6.2]	years).	These	factors	together	result	in	

PRs	of	3.6	[2.9	-	4.8]	for	TM1x	and	43	[27	-	84]	for	TM90x.	We	suggest	that	the	change	in	

variance	between	the	timescales	used	largely	reconciles	the	differences	between	the	``two	

to	five"	and	``thirty"	times	increases	in	likelihood	found	by	the	WWA	and	UKMO	reports,	

with	other	methodological	factors	playing	a	minor	role.	Although	the	higher	return	period	

for	TM90x	has	some	impact,	it	is	less	significant	that	the	change	in	variability.	

Fig.	2	also	demonstrates	a	relevant	deficiency	in	the	model:	the	model	distributions	are	

narrower	than	the	observed	distributions,	meaning	the	model	has	lower	variability	than	the	
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real	world.	This	reduced	variance	has	a	significant	impact	on	attribution	results	(Bellprat,	

Guemas,	Doblas-Reyes,	&	Donat,	2019),	and	means	that	the	PRs	for	the	British	Isles	

presented	here,	especially	for	TM90x,	are	likely	to	be	overestimated.	Underrepresented	

variability	often	occurs	in	prescribed	SST	models	(Fischer,	Beyerle,	Schleussner,	King,	&	

Knutti,	2018),	and	is	visible	in	HadGEM-3A	for	many	coastal	locations	over	Europe	(SI	Fig.	

2a7-a9).	Fig.	2d	shows	the	power	spectrum	of	JJA	summer	temperatures	over	the	British	

Isles,	indicating	that	HadGEM3-A	has	similar	spectral	characteristics	to	E-OBS,	but	

underrepresents	the	intraseasonal	2m	temperature	variability	at	almost	all	frequencies,	

which	will	likely	result	in	overestimated	PRs.	Power	spectra	for	other	model	ensembles	are	

shown	for	comparison,	demonstrating	that	the	fully	bias-corrected	EURO-CORDEX	ensemble	

has	the	same	variability	characteristics	and	magnitude	as	the	observations.	

Discussion 

Our	analysis	highlights	a	key	property	of	extreme	weather	attribution:	the	variance	of	the	

event	definition	used,	both	in	terms	of	the	statistic	itself	and	its	representation	within	any	

models	used.	The	use	of	longer	temporal	event	scales	in	general	increases	both	the	spatial	

uniformity	and	magnitude	of	the	probability	ratios	found,	consistent	with	Kirchmeier-Young,	

Wan,	Zhang,	&	Seneviratne	(2019),	due	to	a	decrease	in	variance	compared	to	shorter	

scales.	The	difference	in	temporal	scale	between	two	reports	concerning	the	2018	summer	

heat	is	sufficient	to	explain	the	large	discrepancy	in	attribution	result	between	them.	We	

find	that	several	European	regions	experienced	season-long	heat-events	with	a	present-day	

return	period	greater	than	10	years.	The	present-day	likelihood	of	such	events	occurring	is	

approximately	10	to	100	times	greater	than	a	``natural"	climate.	The	attribution	results	also	

show	that	the	extreme	daily	temperatures	experienced	in	parts	of	Scandinavia,	the	
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Netherlands	and	Iberia	would	have	been	highly	unlikely	without	anthropogenic	warming.	

The	prescribed	SST	model	experiments	used	here	tend	to	underestimate	the	variability	of	

temperature	extremes	near	the	coast,	which	may	lead	to	the	attribution	results	overstating	

the	increase	in	likelihood	of	such	extremes	due	to	anthropogenic	climate	change	(Bellprat,	

Guemas,	Doblas-Reyes,	&	Donat,	2019).	We	aim	to	properly	quantify	the	impact	of	the	

underrepresented	variability	in	further	work.	Although	here	we	have	used	an	unconditional	

temperature	definition	for	consistency	with	the	studies	we	try	to	reconcile,	we	plan	to	

further	investigate	the	effect	of	including	both	the	atmospheric	flow	context	and	other	

impact	related	variables	such	as	precipitation	in	the	event	definition,	and	address	issues	

models	might	have	with	realistically	simulating	the	physical	drivers	of	heatwaves.	
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Figure Captions 

Figure	1:	Probability	ratios	for	the	2018	summer	heat-event	derived	from	HadGEM3-A	

factual-counterfactual	simulations.	Panels	a-c	show	map	of	increased	likelihood	in	the	real	

world	at	gridbox	scale	for	the	three	event	timescales	analysed	respectively.	Note	that	the	

upper	limit	on	the	color	scale	is	1000	and	gridboxes	with	an	infinite	probability	ratio	are	

shown	in	dark	red.	Panel	d	shows	the	regional	probability	ratios	for	the	three	timescales;	

the	crosses	denote	the	best-estimate,	and	the	bars	denote	the	5th-95th	percentiles.	Note	

that	the	best-estimate	probability	ratios	for	TM1x	in	Scandinavia	and	the	Iberian	Peninsula	

were	infinite	and	2000	respectively.	

Figure	2:	Panels	a-c,	probability	density	functions	of	the	three	temporal	scales	of	event	

statistic	for	the	British	Isles,	showing	HadGEM3-A	ACT	(factual)	and	NAT	(counterfactual)	

simulations,	and	observations	from	E-OBS;	all	as	anomalies	above	the	model	or	observed	

1961:1990	mean	climatology.	Thick	black	lines	show	the	2018	event	defined	probabilistically	

as	the	HadGEM3-A	Historical	temperature	threshold	corresponding	to	the	E-OBS	return	

period,	dotted	black	lines	show	the	event	defined	in	terms	of	the	magnitude	observed	

directly	from	E-OBS.	Panel	d,	periodograms	of	JJA	daily	mean	temperature	in	the	British	Isles	

(seasonality	and	mean	removed)	calculated	as	the	mean	of	intraseasonal	periodograms	for	

all	available	years.	The	HadGEM3-A	power	spectrum	is	calculated	from	the	Historical	

ensemble.	
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Figures 

Figure	1:	Probability	ratios	for	the	2018	summer	heat-event	derived	from	HadGEM3-A	

factual-counterfactual	simulations.	Panels	a-c	show	map	of	increased	likelihood	in	the	real	

world	at	gridbox	scale	for	the	three	event	timescales	analysed	respectively.	Note	that	the	

upper	limit	on	the	color	scale	is	1000	and	gridboxes	with	an	infinite	probability	ratio	are	

shown	in	dark	red.	Panel	d	shows	the	regional	probability	ratios	for	the	three	timescales;	

the	crosses	denote	the	best-estimate,	and	the	bars	denote	the	5th-95th	percentiles.	Note	

that	the	best-estimate	probability	ratios	for	TM1x	in	Scandinavia	and	the	Iberian	Peninsula	

were	infinite	and	2000	respectively.
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Figure	2:	Panels	a-c,	probability	density	functions	of	the	three	temporal	scales	of	event	

statistic	for	the	British	Isles,	showing	HadGEM3-A	ACT	(factual)	and	NAT	(counterfactual)	

simulations,	and	observations	from	E-OBS;	all	as	anomalies	above	the	model	or	observed	

1961:1990	mean	climatology.	Thick	black	lines	show	the	2018	event	defined	probabilistically	

as	the	HadGEM3-A	Historical	temperature	threshold	corresponding	to	the	E-OBS	return	

period,	dotted	black	lines	show	the	event	defined	in	terms	of	the	magnitude	observed	

directly	from	E-OBS.	Panel	d,	periodograms	of	JJA	daily	mean	temperature	in	the	British	Isles	

(seasonality	and	mean	removed)	calculated	as	the	mean	of	intraseasonal	periodograms	for	

all	available	years.	The	HadGEM3-A	power	spectrum	is	calculated	from	the	Historical	

ensemble.	

	


