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Flash flooding surged through the old district of 
Ellicott City, Maryland, on 27 May 2018, turning 
Main Street into whitewater rapids, upending 

cars, destroying businesses, and leading to one death 
(Campbell and Rentz 2018). As of May 2019, damage 
from the Ellicott City f lood had cost $12 million, 
and the city was considering flood mitigation plans 
that ranged from $63 to $175 million (Logan 2019). 
Ellicott City was just one of 12 significant heavy pre-
cipitation and flooding events that occurred between 
May and September of 2018, shattering precipita-
tion records across the region (National Weather 
Service 2019). Other notable events included 3 June, 
when eight West Virginia counties declared states of 
emergency after intense precipitation flooded bridges 
and washed out roads (Maher 2018), and 21–24 July, 
when historic rainfall across the Washington, D.C., 
Metropolitan Area and northern Baltimore County 
in Maryland resulted in more than a dozen high-
water rescues of motorists stranded by flash flooding 
(Halverson and Samenow 2018). These exceptional 
heavy rainfall events are consistent with expecta-
tions from global warming (Pendergrass 2018) and 

observed increases in extreme precipitation across 
the broader northeastern United States (Huang et al. 
2017; Hoerling et al. 2016; Frei et al. 2015).

We examine the mid-Atlantic states of Pennsyl-
vania, New Jersey, Maryland, Washington, D.C., 
Delaware, and West Virginia, which all experienced 
remarkable total and extreme (99th percentile wet 
days) precipitation in 2018 that contributed to flood-
ing. For the years 1920–2018, 2018 has the highest 
or one of the three highest January–September total 
precipitation amounts at 33% and 62% of stations 
(Fig. 1a), respectively, and the highest or one of the 
three highest May–September extreme precipitation 
amounts at 6% and 13%, respectively (Fig. 1b). Spatial-
ly averaged, 2018 has the highest total precipitation on 
record (1-in-99 year event), while extreme precipita-
tion is the fourth highest (4-in-99 year event), shown 
in Figs. 1c and 1d. Here, we assess the fraction of 2018 
total and extreme precipitation risk attributable to 
anthropogenic forcing using station observations and 
a large ensemble of climate simulations.

DATA AND METHODS. Station observations 
are from the Global Historical Climatology Network-
Daily (GHCN-D) dataset (Menne et al. 2012a,b). Our 
analysis is conducted using the 63 stations in our 
domain with daily observations that are at least 80% 
complete for 1920–2018 and 2018 (Fig. 1a). We treat 
any years less than 80% complete as missing. We 
choose 1920 as the start date of our analysis to balance 
spatial and temporal coverage of station data as well as 
to maximize overlap with climate simulations. We use 
gridded area averaging following Huang et al. (2017).

To assess the contribution of anthropogenic climate 
change to the exceptional precipitation of 2018, we 
use the historical climate simulations from version 
1 of the Community Earth System Model (CESM1) 
under the Large Ensemble Project (LENS) from the 
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National Center of Atmospheric Research (Kay et al. 
2015). LENS uses CESM1 at ~1° × 1° spatial resolution 
to create a single model large ensemble where each run 
is initialized with a small roundoff error (10–14 K) in the 
atmospheric temperature fields (Kay et al. 2015). As 
such, each ensemble member is a plausible trajectory 
of historical climate due to the model’s representation 
of forced and unforced variability, and together the 
40 ensemble members provide a much larger range 
of outcomes from internal variability than either 
observations or any one model run can provide. We 
combine historical (1920–2005) and future climate 
simulations (2006–18) forced with RCP 8.5 to create 
forty 99-yr transient simulations from 1920 to 2018.

We consider two precipitation metrics that con-
tributed to the extensive mid-Atlantic f looding of 
2018. The first is May through September extreme 
precipitation (hereafter extreme precipitation). We 

define extreme precipitation as the sum of precipita-
tion falling on the top 1% of wet days (99th percentile 
wet days) from 1 May to 30 September, because the 
flooding of interest occurred during those months. 
The second metric is January through September pre-
cipitation (hereafter total precipitation). We define to-
tal precipitation as the sum of precipitation 1 January 
to 30 September, and use it as a proxy for antecedent 
soil moisture because flooding can be exacerbated by 
high antecedent soil moisture (Collins 2019; Lapenta 
et al. 1995). To determine the 99th percentile wet day 
threshold, we use all wet days (defined as days with 
precipitation ≥ 1 mm in all 12 months) ranked from 
highest to lowest. GHCN-D thresholds are calculated 
by station from 1920–2018, and LENS thresholds 
are calculated by grid cell from 1920 to 2018. We 
determine the rank of 2018 for regionally averaged 
total and extreme precipitation from GHCN-D over 

Fig. 1. GHCN-D (a) January to September 2018 total precipitation rank and (b) May to September 2018 ex-
treme precipitation rank by station for 1920–2018. Regionally averaged time series of GHCN-D (c) January to 
September total precipitation and (d) May through September extreme precipitation. Red dots highlight 2018 
precipitation.
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the 99-yr record (Fig. 1). From each LENS historical 
ensemble member time series of total precipitation, 
we first remove the time-evolving ensemble mean, 
which represents the externally forced response com-
mon to all simulations (Maher et al. 2019), creating 
anomalies. Then, we add the climatological ensemble 
mean magnitude of total precipitation from the early 
part of the record (1920–50) to the anomalies. We 
repeat the process for extreme precipitation. This 
creates a 40-member ensemble of regional total and 
extreme precipitation for 1920–2018 in a counterfac-
tual world without late twentieth century (1951–2018) 
forcing (hereafter historical reduced forcing). Results 
are insensitive to the time period used to calculate 
climatological ensemble mean magnitudes (not 
shown). We choose to modify LENS historical data 
as our counterfactual because while CESM1 reason-
ably captures mid-Atlantic precipitation (Fig. S1), the 
LENS preindustrial data are substantially wetter than 
the LENS historical data (not shown), which is incon-
sistent with paleoclimate data (Ljungqvist et al. 2016).

Using elements of Diffenbaugh et al. (2017), we 
assess the fraction attributable risk (FAR; Allen 2003; 
Stott et al. 2016) to anthropogenic climate change by 
1) finding the magnitude of total precipitation with 
the same rank as 2018 in the GHCN-D observations 
(hereafter similar to 2018) in each of the 40 LENS his-
torical reduced forcing 99-yr time series; 2) averaging 
those 40 magnitudes to calculate a threshold defining 
LENS historical reduced forcing total precipitation 
similar to 2018; 3) using that mean to calculate the 
probability of total precipitation similar to 2018 in 
the 40 LENS historical and historical reduced forcing 
99-yr time series; and 4) calculating FAR as
	

0

1

FAR 1= −
P
P

,

where P0 is the probability of exceeding the threshold 
of precipitation similar to 2018 in the LENS histori-

cal time series conditional on the presence of natural 
and early twentieth-century anthropogenic forcings 
(historical reduced forcing), and P1 is the probability 
of exceeding the threshold of precipitation similar to 
2018 in the LENS historical time series conditional 
on the presence of natural and full twentieth-century 
anthropogenic forcings (historical), and P1/P0 is the 
risk ratio (RR). We then calculate FAR for extreme 
precipitation similar to 2018, and the combined oc-
currence of total precipitation and extreme precipi-
tation similar to 2018, using the same methodology. 
We calculate uncertainty around FAR and RR by 
bootstrapping (Efron and Tibshirani 1986) the 40 en-
semble members from the LENS historical data 1,000 
times, repeating the analysis above, and determining 
95% confidence intervals (CI) using the bootstrap 
standard error estimate of Paciorek et al. (2018).

RESULTS. LENS reasonably simulates regionally av-
eraged GHCN-D total precipitation [see Fig. S1a in the 
online supplemental material; p = 0.29, Kolmogorov-
Smirnov (K-S) test], but not extreme precipitation 
(Fig. S1b; p < 0.001, K-S test). Figure 2 shows the prob-
ability and cumulative probability of total precipita-
tion and extreme precipitation similar to 2018 from 
the LENS historical and historical reduced forcing 
simulations. These figures indicate that the historical 
simulations have larger total and extreme precipita-
tion than the historical reduced forcing simulations.

Table 1 shows the fraction of risk attributable to 
anthropogenic climate change for total and extreme 
precipitation similar to 2018. The 1-in-99 year total 
precipitation and 4-in-99 year extreme precipitation 
mean magnitudes from the historical reduced forc-
ing data are 1070.1 mm and 52.7 mm, respectively. 
In LENS, the late-twentieth-century anthropogenic 
forcing is responsible for 35% of 1-in-99 year January 
to September total precipitation occurrences, and a 
1.5 times increase in the likelihood of total precipita-

Precipitation condition HIST-RF (P0) HIST (P1) RR (95% CI) FAR (95% CI)

Total Jan–Sep 0.68% 1.04% 1.53 (1.09, 2.25) 0.35 (0.17, 0.59)

Extreme May–Sep 3.69% 4.14% 1.12 (1.05, 1.21) 0.11 (0.05, 0.18)

Total Jan–Sep and extreme May–Sep 0.15% 0.23% 1.53 (0.85, 4.65) 0.35 (−0.15, 0.82)

Table 1. LENS historical reduced forcing (HIST-RF) and historical (HIST) probability of mid-Atlantic 
total and extreme precipitation similar to 2018, and the resulting risk ratio (RR) and fraction attribut-
able risk (FAR).
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tion similar to 2018. In addition, 11% of 4-in-99 year 
May to September extreme precipitation occurrences 
are attributable to the LENS late-twentieth-century 
anthropogenic forcing. We find no statistically sig-
nificant influence of late-twentieth-century anthro-
pogenic forcing on combined 1-in-99 year January to 
September total precipitation and 4-in-99 year May 
to September extreme precipitation occurrences. 
Extreme precipitation FAR should be interpreted 
with caution given the limitations of LENS historical 
simulations in accurately representing extreme pre-
cipitation when compared to GHCN-D observations 
(Fig. S1b). We evaluated the sensitivity of our findings 
to methodology, and find qualitatively similar, but 
larger, responses to anthropogenic forcing (see the 
online supplemental material).

CONCLUSIONS. The mid-Atlantic region was 
impacted by damaging floods throughout the warm 
season of 2018 (National Weather Service 2019). 
These floods were associated with the highest total 
precipitation from January to September and the 
fourth highest extreme precipitation from May 
to September for 1920–2018. Contrasting LENS 
historical and LENS historical reduced forcing, we 
find that anthropogenic climate change increased 
the probability of total precipitation associated with 
the exceptional flooding of 2018 by 1.1 to 2.3 times. 
Incorporating additional large ensembles, especially 
from models that better reproduce observed extreme 
precipitation in the mid-Atlantic, as well as partition-
ing greenhouse gas and aerosol anthropogenic forc-
ings, would strengthen this attribution.

Fig. 2. LENS historical (HIST) and historical reduced forcing (HIST-RF) (a) 1-in-99 year January to September 
total precipitation probability, (b) 1-in-99 year January to September total precipitation cumulative probability, 
(c) 4-in-99 year May to September extreme precipitation probability, and (d) 4-in-99 year May to September 
extreme precipitation cumulative probability.
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