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Capsule 17 

The 2021 low solar radiation over southeastern Tibetan Plateau was mainly caused by abnormally 18 

strong southerlies and further enhanced by anthropogenic aerosols and GHGs-induced warming, 19 

and consequently reduced vegetation growth.20 

Introduction 21 



 

2 

The Tibetan Plateau (TP), known as the ‘Third Pole’ region, is one of the most sensitive places 22 

to global climate change (Zhang et al. 2013; Yao et al. 2019), which possesses the highest surface 23 

incident solar radiation (SSR) in China but has been dimming in recent decades (Tang et al. 2011; 24 

Yang et al. 2012; He and Wang 2020). In the 2021 growing season, i.e., May to September, 25 

southeastern Tibetan Plateau (SETP; 29-34°N, 89-102°E; red box in Fig. 1a) registered a 26 

widespread and extremely low SSR since 1950 with approximately -18.65 W/m2 of regional mean 27 

anomaly relative to 1950-1979 mean (Fig.1a-1b). Such extreme events are bound to disturb the 28 

fragile ecosystem in the SETP (Ren et al. 2021), so it is critical to explore possible causes of this 29 

event and its potential impacts on local vegetation growth. 30 

 Clouds, aerosols and water vapor have been considered the main contributors to SSR variation 31 

(Wild 2009; He et al. 2021b). In the growing season, the South Asian monsoon is particularly 32 

prominent for water vapor supply of SETP, thus forming clouds and raining (Lau et al. 2006). 33 

Thereby, strong meridional winds from the Bay of Bengal may be responsible for the occurrence 34 

of the extreme SSR events like 2021 (Fig. 1c). Besides, human activities may also contribute to an 35 

increase in the occurrence probability of such extreme SSR events (Christidis et al. 2016; 36 

Takahashi et al. 2019; He et al. 2021a). Emission of anthropogenic greenhouse gases (GHGs) is 37 

causing global warming, which is increasing atmospheric water vapor that is favorable to form 38 

cloudy days. Anthropogenic aerosols also reduce SSR through absorption and scattering effects 39 

(Ramanathan et al. 2001). Based on the aerosol optical depth data from the Moderate Resolution 40 

Imaging Spectroradiometer product (MYD08), the aerosol loadings over SETP are greater relative 41 

to the past six years (Fig. S1a). Meanwhile, CMIP6 simulations under the anthropogenic aerosol 42 

forcing-only scenario (only until 2020) show that SSR driven only by anthropogenic aerosol 43 

decreases by -1.30 W/m2·decade (p < 0.01) from 1950 to 2020 (Fig. S1b). Therefore, we also 44 

attempted to quantify the roles of anthropogenic forcings, including anthropogenic aerosols and 45 

GHGs, in the occurrence probability of the low SSR events like 2021. 46 

The vegetation growth on the TP depends to a large extent on local climate conditions, of 47 
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which air temperature, precipitation and solar radiation are the three main climatic factors for 48 

vegetation growth (Saleska et al. 2016). Existing researches have suggested that increases in vapor 49 

pressure deficit (VPD) rather than changes in precipitation have a greater impact on vegetation 50 

productivity (Restaino et al. 2016; Yuan et al. 2019). Solar radiation is the energy source of 51 

vegetation photosynthesis, which can directly change the rate of carbon assimilation by plants and 52 

in turn leads to significant variations in gross primary productivity (GPP) (Mercado et al. 2009). 53 

Thereby, low SSR may interfere with the vegetation growth activities on SETP with the most 54 

unique alpine meadow ecosystem in the world. However, the impact of such low SSR events on 55 

GPP over SETP has been rarely investigated. 56 

In all, this study aims to explore three questions: 1) How extremely is the low SSR in the 2021 57 

growing season over SETP since 1950? 2) What are the contributions of regional circulation, 58 

anthropogenic aerosols, and GHGs-induced warming to the occurrence probability of such SSR 59 

events like 2021? 3) What is the impact of the 2021 low SSR event on local GPP? 60 

 61 

Data and Methods 62 

Reanalysis products have been widely used in climate studies when observational data are not 63 

available, due to their excellent performances in spatiotemporal continuities and inter-annual 64 

variability and trends (Zhou et al. 2018). Through developments and applications of the advanced 65 

forecast and assimilation systems (IFS Cycle 41r2 and 4D-Var) in the past 10 years, ERA5 has 66 

undergone a major upgrade, providing data from 1950 onward with much higher spatial and 67 

temporal resolutions than other reanalysis products (Hersbach et al. 2019). ERA5 has been verified 68 

to outperform its predecessor ERA-Interim in SSR simulations at monthly, interannual and decadal 69 

scales in China (He et al. 2021b). Here, we collected monthly mean SSR observations (only 5 sites 70 

available in SETP, Fig. S2a) from the China Meteorological Data Service Center 71 

(http://data.cma.cn/en) to confirm that the SSR variation from ERA5 matches well with 72 
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observations during 1994-2021and both present the extremely low SSR in the 2021 growing 73 

season (Fig. S2b). Because the ground-based observations contain large errors due to the aging 74 

and replacement of instruments before 1993 (Tang et al. 2011; Wang 2014; Wang and Wild 2016; 75 

He et al. 2018) and significantly lack spatial representation in SETP (Fig. S2a), we finally adopted 76 

the monthly SSR of ERA5 reanalysis during 1950-2021 in this study. We chose the earliest 77 

possible period, i.e., 1950-1979 with relatively few human activities in SETP 78 

(http://www.npc.gov.cn/englishnpc/c2767/200903/979200508a3844d0b21f57b33e6ded94.shtml), 79 

as the baseline to calculate their anomalies for better quantifying human influence in the following. 80 

To depict the atmospheric circulation pattern behind the event, the monthly 500 hPa 81 

geopotential height (Z500), meridional wind (V500), and zonal wind (U500) and total cloud cover 82 

(TCC) from 1950 to 2021 were downloaded from ERA5 83 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). TCC data from MODIS 84 

product (MYD08, http://dx.doi.org/10.5067/MODIS/MYD08_M3.006) (Platnick et al. 2015) was 85 

used to verify the reliability of the reanalysis TCC (Fig. 1b).  86 

To quantify the impacts of regional circulation, anthropogenic aerosols, and GHGs-induced 87 

warming on the extremely low SSR events like 2021, historical simulations with all-forcing (ALL), 88 

anthropogenic aerosol forcing-only (AER), GHGs forcing-only (GHG) and natural forcing-only 89 

(NAT) from the Coupled Model Intercomparison Project Phase 6 (CMIP6; https://esgf-90 

node.llnl.gov/search/cmip6/) were adopted (Eyring et al. 2016). To ensure an equal weight for 91 

different CMIP6 models, the “rlilp1f1” realizations were used in this study. Thirty CMIP6-ALL 92 

simulations (Table S1 in the Supplementary Material) were selected based on the comparison of 93 

the May-September mean SSR from CMIP6-ALL runs with those from ERA5 via a Kolmogorov-94 

Smirnov test (h = 0 indicates that the test fails to reject the null hypothesis, which is two datasets 95 

are from a similar distribution, at the default 5% significance level). Only twelve models are 96 

simultaneously available for CMIP6-NAT, CMIP6-AER and CMIP6-GHG simulations (Table S1), 97 

and their simulations only last until 2020. The CMIP6-ALL runs only last until 2014, so the ALL 98 
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runs were extended to 2021 with the SSP2-4.5 runs that are more consistent with the current 99 

climate than other scenarios (O'Neill et al. 2016). The time series and probability density 100 

distribution (PDF) of SSR and V500 anomalies from CMIP6-ALL and ERA5 shown in Figure S2 101 

illustrate that their SSR and V500 have comparable probability density distributions, respectively. 102 

To be consistent, all data used in this study were converted into 1°×1° grids based on the bilinear 103 

interpolation method. 104 

To estimate the occurrence probability (P) and return period (RP = 1/P) of the event, we 105 

applied the generalized Pareto distribution (GPD) with a 70% threshold (Schaller et al. 2016) 106 

(Zhou et al. 2021) to fit the lower tail (i.e., 30% of data) of the SSR distribution, which can reduce 107 

the statistical uncertainty of quantile variances (Brabson and Palutikof 2000). Since the CMIP6-108 

NAT, CMIP6-AER and CMIP6-GHG runs under the SSP2-4.5 scenarios are only available from 109 

3 or 4 models, we selected a window of the last 30 years (1991-2020/2021) instead of a 2021-110 

centered time window (Christidis et al. 2016; Zhou et al. 2021) to ensure enough samples to 111 

robustly estimate probability of the event using a 70% GPD fit. We adopted regional mean SSR 112 

anomaly in the 2021 growing season over SETP as the threshold (i.e., -18.65 W·m-2, as derived 113 

from ERA5) of extremely low SSR events for CMIP6-ALL, CMIP6-AER, CMIP6-GHG and 114 

CMIP6-NAT runs to explore the causes of this extreme event. Probability ratio is the ratio of event 115 

occurrence probabilities between two groups of simulations. It was adopted to assess the 116 

contributions of these factors to the event probability. Firstly, we assessed the contribution of south 117 

winds by estimating their probability ratios under strong south winds and weak winds based on 118 

the 30 CMIP6-ALL runs, i.e., PstrongV500/PweakV500, where PstrongV500 is the occurrence probability of 119 

SSR being less than the 2021 extreme SSR event under the condition of strong south wind 120 

anomalies (V500 ≥ 0.59 m/s, the 2021 regional mean value of ERA5 V500 in dash red box in Fig. 121 

1c) and PweakV500 is that under the case of weak wind anomalies between −0.05 and 0.05 m/s. 122 

Secondly, we estimated the relative impact of anthropogenic aerosols and GHGs-induced warming 123 

on such low SSR events like 2021 by computing probability ratios of CMIP6-AER and CMIP6-124 
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GHG referenced to CMIP6-NAT runs from those 12 models. The 95% confidence intervals (CI) 125 

were estimated via bootstrap random resampling with 1000 times.  126 

To explore the impact of the 2021 low SSR event on vegetation growth, we used a state-of-127 

the-art model (i.e., P-model) to simulate changes of gross primary productivities (GPP). Unlike 128 

other empirical models, the P-model was developed as a universal model based on the biochemical 129 

processes of photosynthesis and the optimality principle (Wang et al. 2017) . The P-model has 130 

been widely used (Liu et al. 2019; Peng et al. 2020; Tan et al. 2021; Tan and Wang 2022) and been 131 

verified to accurately estimate GPP (Stocker et al. 2020), including the variation of alpine GPP 132 

over TP (Ren et al. 2021). More details about the P-model can be seen in Wang et al. (2017). The 133 

input data of the P-model include the monthly surface pressure, 2-m air temperature, relative 134 

humidity, VPD and SSR from ERA5, fraction of absorbed photosynthetically active radiation 135 

(fPAR) from MODIS 8-day products (MOD15A2H), and monthly global CO2 data from the 136 

National Oceanic and Atmospheric Administration (NOAA) during 2015-2021. 137 

 138 

Results 139 

 During the 1970-2021 growing season, the reginal mean SSR over SETP showed a continuous 140 

downward trend (-2.99 W/m2·decade), and SSR in 2021 registered a new record of the lowest 141 

value since 1950 over most areas of SETP (Fig. 1a-b). TCC and V500 anomalies in the 2021 142 

growing season were also abnormally higher than the 1950-1979 mean (Fig. 1b-c), which is most 143 

likely due to the strong southerly winds bringing sufficient moisture from the Bay of Bengal to 144 

SETP, resulting in cloudy and rainy weather and thus the low SSR. This is also reflected by close 145 

and consistent relationships between SSR and V500 across interannual to interdecadal timescales 146 

with correlation coefficients from -0.2 to -0.7 (p < 0.05) (Fig. 1b). Based on the 70% GPD fit of 147 

the observed SSR anomalies, we found that the extremely low SSR event for the 2021 growing 148 

season in SETP is a 1-in-284-year event (95% CI: 82-∞) (Fig. 1d). The large uncertainty in this 149 
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return period is mainly ascribed to the small sample size or being too extreme in the 2021 event 150 

which has not been found in previous events. 151 

 152 

  153 

Figure 1. (a) Spatial distribution of the surface incident solar radiation (SSR; W/m2) anomalies in 154 
May-September 2021. “○” and “∗” represent the 2021 SSR values are the first and second lowest 155 
SSR records since 1950, respectively. (b) Time series of May-September mean SSR (in W/m2; 156 
orange curve), total cloud cover (TCC; in Unit 1; blue for ERA5 and black for MODIS) anomalies 157 
averaged in SETP (red box in Fig. 1a) from 1950 to 2021. The purple curve denotes the 500 hPa 158 
meridional wind anomalies (V500; m/s) averaged in red dashed box in Fig. 1c. The 2021 values 159 
are shown as pentagram. (c) Spatial distribution of TCC anomalies (shading; in Unit 1), the 500 160 
hPa geopotential height (Z500; in meters; contours) and wind vector (UV500; in m/s; vectors) in 161 



 

8 

May-September 2021. (d) Generalized Pareto distribution (GPD) fit of the SSR anomalies. The 162 
95% confidence intervals are shown as dash curves and the SSR value for May-September 2021 163 
is shown as red pentagram. 164 

 165 

 To quantify the contribution of anomalous south winds in such SSR events like 2021 over 166 

SETP, we compared the return periods of such low SSR events like 2021 between two conditions 167 

with strong south wind anomalies (V500 ≥ 0.59 m/s; purple in Fig. 2a) and weak wind anomalies 168 

(-0.05 m/s ≤ V500 ≤ 0.05 m/s; light purple in Fig. 2a), and found that the best estimates of the 169 

occurrence probability of such SSR events below the 2021 threshold (i.e., -18.65 W·m-2) are 6.17% 170 

(95% CI: 1.81%-9.95%) and 0.67% (95% CI: 0.001%-1.52%), respectively. This indicates that 171 

anomalous south winds could substantially increase the chance of such events to be a factor of 172 

9.25 (95% CI: 6.56-19.02) (Fig. 2b), suggesting that south winds play a key role in causing the 173 

low SSR over SETP through propagating large amounts of atmospheric moisture to SETP from 174 

the Bay of Bengal. It’s worth noting that anthropogenic forcing did not significantly change the 175 

likelihood of such anomalous south winds like 2021 (Fig. S3). 176 

 177 
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 178 

Figure 2. (a) Return period for the regional mean surface incident solar radiation anomalies (SSR; 179 
W/m2; dots) from CMIP6 historical climate simulations under different scenarios, including 180 
anthropogenic aerosol forcing-only runs (AER; red), GHGs forcing-only runs (CMIP6-GHG; blue) 181 
and natural forcing-only runs (NAT; yellow) and their GPD fits are shown as solid curves with the 182 
95% confidence intervals in dash curves. The deep purple and light purple curves represent the 70% 183 
GPD fits under two conditions with strong south wind anomalies (V500 ≥ 0.59 m/s, the 2021 value) 184 
and weak wind anomalies (−0.05 m/s ≤ V500 ≤ 0.05 m/s) in the CMIP6 all-forcing climate 185 
simulations, respectively. The black horizonal line is the observed SSR averaged in May-186 
September 2021. (b) Probability ratios of such extreme SSR events like 2021 due to the occurrence 187 
of strong south winds (V500; purple), anthropogenic aerosols (AER; red) and GHGs-induced 188 
warming (GHG; blue). The bottom and top edges of the bar indicate the 95% confidence intervals. 189 
The black dashed line represents the probability ratio equal to 1. 190 

 191 

Comparisons of the probabilities of such SSR events between CMIP6-AER/CMIP6 GHG and 192 

CMIP6-NAT runs can infer the impacts of anthropogenic aerosols and global warming on the 2021 193 
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low SSR event. Based on the GPD fit, such SSR events in the CMIP6-AER and CMIP6-GHG runs 194 

are more likely to occur than in CMIP6 NAT runs (Fig. 2a). The best estimates of the occurrence 195 

probabilities of the SSR anomalies to be less than the 2021 threshold are 3.40% (95% CI: 2.00%-196 

4.97%), 1.20% (95% CI: 0.24%-2.05%) and 0.72% (95% CI: 0.04%-1.36%) for CMIP6-AER, 197 

CMIP6-GHG and CMIP6-NAT runs, respectively. The probability ratios of such SSR events like 198 

2021 due to anthropogenic aerosol and global warming are 4.70 (95% CI: 1.66-15.49) and 1.66 199 

(95% CI: 1.01-6.59), respectively (Fig. 2b). This indicates that anthropogenic aerosols and the 200 

increased atmospheric water vapor due to GHG-induced warming could further make such low 201 

SSR events occur more likely in SETP. 202 

 As the main energy source of vegetation photosynthesis, extreme SSR conditions are bound 203 

to change local GPP. Compared to the average of the recent six years (2015-2020), GPP in 2021 204 

growing season apparently decreased in the eastern SETP but increased in the western SETP (Fig. 205 

3a). SSR in the 2021 growing season presented negative values in the whole SETP (Fig. 3c), which 206 

significantly resulted in an extensively decreased GPP (Fig. 3b). The difference of GPP between 207 

Fig. 3a and 3b mainly resulted from other influencing factors including air temperature, VPD and 208 

fPAR (Fig. 3d-f). For dry western SETP, vegetation growth activities are more limited by water 209 

availability (Yao et al. 2019), so the reduction of VPD (Fig. 3e) promotes stomatal opening to 210 

enhance carbon uptake and water use efficiency of plants (Konings et al. 2017; Yuan et al. 2019). 211 

Along with the increase of fPAR (Fig. 3f), GPP increased in these western SETP (Fig. 3a). For 212 

humid eastern SETP, SSR could be a stronger stress factor for vegetation photosynthesis (Ren et 213 

al. 2021), thereby the extremely low SSR plays a major role in the GPP reduction in the 2021 214 

growing season over eastern SETP (Fig. 3a and 3c). Note that air temperature, SSR, and VPD not 215 

only directly influence the photosynthesis rate, but also indirectly cause changes in GPP through 216 

altering fPAR. 217 

 218 
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 219 

Figure 3. (a) Spatial distribution of the cumulative gross primary productivity (GPP; g C/m2) 220 
changes in the 2021 growing season relative to the 2015-2020 mean. (b) As in (a), but for GPP 221 
changes only influenced by surface incident solar radiation (SSR). (c-f) As in (a), but for the 222 
anomalies of SSR (W/m2), 2-m air temperature (Ta; ℃), vapor pressure deficit (VPD; kPa) and 223 
fraction of absorbed photosynthetically active radiation (fPAR), respectively. 224 

 225 

Conclusions 226 

 The SSR in the 2021 growing season registered a new low record in southeastern Tibetan 227 

Plateau with -18.65 W/m2 relative to the 1950-1979 mean. Through the analyses using 228 

observations, reanalysis and CMIP6 model simulations, the extremely low SSR event in 2021 is 229 

mainly attributed to more clouds and abundant atmospheric moisture caused by anomalous 230 

southerlies from the Bay of Bengal. The existence of abnormal south winds could increase the 231 

probability ratio of such low SSR events like 2021 to be 9.25 (95% CI: 6.56-19.02). Anthropogenic 232 
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aerosols and GHGs-induced warming might increase the probability of such SSR events to be a 233 

factor of 4.70 (95% CI: 1.66-15.49) and 1.66 (95% CI: 1.01-6.59), respectively. As a result, the 234 

extremely low SSR event could significantly reduce local GPP in the 2021 growing season over 235 

SETP, especially in the humid eastern SETP where SSR has a stronger impact on vegetation 236 

photosynthesis. 237 

 The uncertainties could exist in our attribution analysis based on climate simulations. 238 

Specifically, data accuracy of external forcings including anthropogenic aerosols and greenhouse 239 

gases used in climate models and model skills of simulating related physical processes could 240 

introduce attribution uncertainties to some extent. Moreover, although SETP is sparsely populated, 241 

the use of the 1950-1979 baseline period to calculate the anomalies might still underestimate the 242 

contribution of anthropogenic forcing in the probability of such events, since there’s still some 243 

anthropogenic effect during this baseline period. Finally, due to the unavailability of CMIP6 244 

simulations with individual forcing after 2021, the use of a window of the recent 30 years instead 245 

of a 2021-centered time window probably underestimates the roles of these external forcings 246 

slightly.  247 
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